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Phase Transition in an Interacting Bose System. 
An Application of the Theory of Ventsel' and Freidlin 
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We consider a system of N bosons on a complete graph with V vertices 
interacting through hard core repulsion. With the use of the Ventsel'-Freidlin 
large-deviation theory of random perturbation of dynamical systems, we 
calculate the canonical free energy in the thermodynamic limit and prove that 
the system exhibits a phase transition. 
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1. I N T R O D U C T I O N  

Since its discovery in the mid 1920s, Bose-Einstein condensation has been 
one of the major challenges of statistical physics. The interest was mainly 
motivated by London's (15"16) proposal according to which the superfluid 
phase transition of 4He is actually a Bose-Einstein condensation. 

Since then a lot of work has been done. The phase transition of the 
ideal Bose gas is well understood. For a fairly general and exhaustive 
treatment see ref. 1. But the influence of initerparticle interaction on the 
Bose-Einstein condensation remained essentially unexplained. To our 
knowledge, all the existing results refer to approximate models defined after 
some kind of ad hoc "momentum space diagonalization" (e.g., refs. 2-4, 12, 
and 17). (However, there are some one-dimensional exceptions: the one- 
dimensional Bose gas with 6-repulsion treated rigorously with the help of 
the Bethe ansatz in refs. 14 and 7. But this one-dimensional system does 
not exhibit a phase transition at finite temperature. In ref. 6 some very 
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specially chosen boundary conditions are responsible for the phase 
transition.) Although these results are intuitively appealing and the mathe- 
matical tools involved are very attractive, they do not give a satisfactory 
answer to the following basic question: do interacting bosons ever 
condense?~13/ 

In the present paper we propose and solve rigorously (without any 
kind of "momentum space approximation") the following model of 
interacting bosons: the "space" of the system is a complete graph on V 
vertices and, accordingly, the one-particle Hamiltonian (i.e., the "kinetic 
energy operator") is the properly normalized discrete Laplacian on this 
graph. The interaction between the particles is hard-core repulsion. That is: 
at most one particle is allowed at any site of the graph (for definition of the 
model see Section 2). After some standard and one tricky random walk 
reductions, we reformulate the problem of the canonical thermodynamic 
limit as a genuine large-deviation problem associated with a family of 
inhomogeneous random walks on Z (Section 3) and we find that the 
theory of Freidlin and Ventsel' of random perturbations of dynamical 
systems~lO, 19.20,22,23) is designed exactly for this kind of problem (Section 4). 
The last three sections (Sections 5-7) are devoted to the analysis of the 
variational problem which arises from the Friedlin-Ventsel'-type formula- 
tion. This completes the calculation of the cannonical free energy and the 
proof that the system exhibits a nontrivial phase transition. 

In our opinion, the interest of this paper is twofold. (1) As far as we 
know, for the first time a phase transition is proved for an interacting Bose 
system without ad hoc approximations. (But of course we admit that the 
fact that the model has no proper spatial structure is a serious drawback.) 
(2) From the point of view of the probabilist, we hope, it is a nice applica- 
tion of Friedlin and Ventsel's theory to a problem which arises naturally 
from mathematical physics. 

After the presentation of a preliminary version of this result, Oliver 
Penrose indicated a completely different way of treating this model. His 
results, including an explicit formula for the amount of condensate, will be 
presented elsewhere. ~18) 

2. THE M O D E L  A N D  THE M A I N  RESULT 

We consider the canonical ensemble for N bosons on a complete 
graph on V vertices A v = { 1, 2 ..... V}, interacting via hard-core repulsion. 
More exactly: the one-particle Hilbert space is V-dimensional: 

~ v  = { ~ ( x ) l x E A v }  
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and the one-particle Hamiltonian (or kinetic energy operator) is the 
properly normalized discrete Laplacian on the complete graph on A v: 

1 
Kv~o(x) = - ~  v~0(x) = v }2 (~0(x)- ~0(y)) u y~Av 

This operator is the orthogonal projection to the subspace orthogonal to 
the constant functions. Since the spectrum of K v  consists of two points 
{0, 1 }, where 1 is ( V -  1)-fold degenerate, the statistical physics of non- 
interacting particles on this graph is quite trivial [see formulas (2.2), (2.3)]. 

The interaction considered is hard-core repulsion; i.e., formally, 

U(x1 ..... XN)~_ . {O if otherwisei#j~xi#xJ 

Our final aim is the calculation of the canonical free energy per unit 
volume 

f l f (p ,  fl) = - lim l l o g  Z(f i ,  N,  V) 
N V~oo 
~lV ~ p 

(2.1) 

with the canonical partition function Z defined as 

Z(f l ,  N, V) = Tr8 exp( - - f i l l y ,  N) 

where TrB stands for the trace on the symmetric subspace of the N-fold 
tensor product ~ v |  "'" |  HV, N is the total Hamiltonian 

HV, N =  HOv, N + U 

0 Hv,  x is the Hamiltonian of the noninteracting bosons, p is the density, and 
fl is the inverse temperature of the system. 

For sake of comparison we give the (straightforward) results for the 
noninteracting system: 

Bfo, B(P, P)= { -- 
(p + 1) log(p + 1) + p log p + tip 

1 
if p < po, c - e~ _ l 

(Po, c + 1 ) log(p0, c + 1 ) + Po, c log Po,~ + flPo, c 

if P >~ Po, c 

(2.2) 
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for Bose Einstein statistics, and 

flfO.F(P, fi) = P log p + (1 -- p) log(1 -- p) + tip (2.3) 

for Fermi Dirac statistics. 
Thus, the free Bose gas exhibits a phase transition (i.e., Bose-Einstein 

condensation) (This is actually a very simple mean-field result.) The ques- 
tion is: how does the repulsive interaction influence this behavior? The 
answer is formulated as follows as the main result of this paper. 

Theorem 1. 
p ~ [0, 1 ] and f le  [0, oo). The free energy per unit volume is given by 

flf(p, fi) = p log p + (1 - p) log(1 - p) + tip 

0 ? i f  O<<.fl<fl. 
+ .(1 p)2 1 

- -  ( f l - f l J + ~ l o g [ 1 - E ( f l ) ] + p ( 1 - p ) f l E ( f l )  

if fior<~fi 

The thermodynamic limit (2.1) exists for all values of 

(2.4) 

where 

1 1 - p  
2plog ~(0, ~ )  (2.5) /Lr  = / L , ( p )  = 1 - p 

and E(fl)~ [0, 1) is the unique solution of the equation 

1 1 + [(1 - 2p) 2 + 4p(1 - p)E] ~/2 
[ ( 1 - 2 p ) 2 + 4 p ( 1 - p ) E ] l / 2 1 ~  2p)2+4p(1 p)E] ~/2=fl (2.6) 

Remarks. 1. Observe that the left-hand side of (2.6), as a function of 
E~ [0, 1), is Co  and strictly increasing, taking the value tier(P) for E = 0  
and having the limit + ~ as E ~ 1. 

2. This system of interacting bosons exhibits a phase transition at 
the inverse temperature flcr(P). It is easy to check that the functions 
fi~-~f(p, fl) and fl~+(Of/~fl)(p, fl) are continuous, while the map 
fl ~ (O2f/~fi2)(p, fl) has a jump discontinuity at fl = tier(P). The graph of the 
heat capacity as a function of temperature at fixed density is shown in 
Fig. 1. The jump in the heat capacity is 

( 2 ,ogt; ) 
C ( T c r - O ) - C ( T o r + O ) =  log p(1-  p) 1 - 2 ~  
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I 

, = T  

Fig. 1. The heat capacity as a function of temperature. 

3. It is worth observing that above the critical temperature the free 
energy coincides with the free energy of the noninteracting fermion system 
on the same graph [compare (2.3) and (2.4)]. Is this a general property of 
hard-core boson systems on graphs? This conjecture is supported by the 
results in ref. 10 and 14 besides ours. 

The rest of this paper is devoted to the proof of Theorem 1. 

3. R A N D O M  W A L K  R E P R E S E N T A T I O N S  

As the one-particle free Hamiltonian is the generator of a continuous- 
time random walk on the complete graph on Av with total jump rate 
( V - 1 ) / V ,  we can use the basic random walk representation of the 
partition function (i.e., a Feynman-Kac formula). Let ~xl,x2 ...... U be the 
joint probability distribution of N independent continuous-time random 
walks q1(t), r / z ( / )  . . . . .  tIu(t ) on the complete graph on Av ,  with generators 
A v, starting from the sites x l ,  x2,..., XN ~ A v, respectively. Denote by r the 
first collision time of these random walks: 

= inf{s [ qi(s) = qj(s) for some i, j ~  {1, 2,..., N}, i -C-j} 

By more or less standard arguments one gets the following representation 
of the partition function: 

1 
N, v) = Z Z 

X1 , . . . ,XNG A V  r; E Perrn(N) 
~1 ...... N( r > fl and (Vi) qi(fl) = x~(i)) 

Here Perm(N) denotes the group of permutations of N elements. (We do 
not give here the standard derivation of this formula. One can find very 
similar derivations in various places in the literature; e.g., refs. 9 and 23.) 
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Using the fact that any two sets of vertices of the complete graph with the 
same cardinality are equivalent under the symmetry group of the graph, we 
easily get from the previous formula 

Z(fl, N, V)= ( VN) ~,...,N(Z > fl and {rll(fl) ..... tlu(fl) } = {1,..., N} ) 

(Here {...} = {...} means equality of the sets.) We want to exploit further 
the high degree of symmetry of the complete graph. Let us define the 
following jump process on 7/+ w {t}: 

# { 1 , 2  ..... for 

for t~>'r 

(The symbol t here has its usual meaning--cemetery; o denotes symmetric 
difference and # cardinality of finite sets.) yV'N(t) is a natural measure of 
the distance between the set of sites occupied by the N random walkers at 
time t from the starting set; the process ~V,N dies if two random walkers 
jump on the same site. 

Obviously, yV'N(t) is a continuous-time random walk on Z+ w {?} 
starting from 0. The dying rate of ~rV, U is N(N-- 1)/V, the jump rate is 
N ( V - N ) / V .  The ~ V , N  c a n  jump by - 1, 0, or + 1 with probabilities 

V,N ( N - k ) ( V - N - k )  

Pk~k+l = N ( V - N )  

- 1  V _  N N + - ~ - ~  = r V'N 

V,N k ( V -  2k) 
Pk-~ k -- N( V -  N) 

V k 2N {k~ 2 zufk'~ 
- V - N N  V~--N\NJ = q "  ~NJ 

k 2 
V, N Pk~k 1 - -  N( V-- N) 

N (k)2_=lv ,  N 

(3.1) 

0~< k<~min{N, V - N }  

The Markov character of the process ~-v,u easily follows from the high 
degree of symmetry (i.e., poor geometry) of the complete graph: the 
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geometric relation of two subsets of cardinality N of A v is completely 
determined by the degree of overlapping of the two subsets. The calculation 
of the jump probabilities is straightforward combinatorics. 

Thus, we arrive at our final random walk representation of the parti- 
tion function: 

= ( V ) e x p  ( N(N-1)V 

= ( V )  exp ( N(N-1)V 

- - / ~ )  ~(~v'N(/~) = 01 ~v'N(B) # t) 

In the last line YV'N(t) is a continuous-time random walk on 7/+ with unit 
jump rate and jump probabilities given by (3.1), starting from the origin. 
It is obtained from ~ V , N  by conditioning to the event that it did not die 
before time fl and a convenient rescale of time. 

The existence of the thermodynamic limit (2.1) is equivalent to the 
existence of the following "rate function": 

In(O)=- v x~oolim l l o g N ( y V ' N ( N O ) = O )  
~ / v  ~ p 

(3.2) 

We will choose 0= (1-p)f l .  Using these expressions in (2.1), we get the 
final formula of this section, 

f l f  (p, fl) = p log p + (1 - p) log(1 - p )  + tip + p(  Ip(f l(1 - p ) ) - fi(1 - p)) 

(3.3) 

Our problem is now identified as a genuine large-deviation problem 
related to the family of continuous-time, spatially inhomogeneous random 
walks yN .  v ( t  ) on 7/. As we shall see in the next section, this is exactly the 
problem of Friedlin and Ventsel' on random perturbations of dynamical 
systems. ~176 Henceforth we shall concentrate on the calculation of the 
rate function I n and in the end we shall find it as the solution of a classical 
variational problem. 

4. V E N T S E L ' S  T H E O R E M  

The theory of large deviations of random perturbations of dynamical 
systems due to Ventsel' and Freidlin is exactly what we need for the study 
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of the limit (3.2). In this order we formulate now as Theorem 2 a very 
special consequence of Ventsel's Theorem 2.1 in ref. 22, suitable to our 
problem. 

Let 
l,r: R--* R+ l e, r ,  

be uniformly continuous and bounded functions and such that l ~ and r ~ 
converge uniformly to l and r, respectively, as e ~ 0. Let Y~(t) be the 
continuous-time Markovian random walk on Z with jump probabilities 
given as follows: 

~ K(ex). At + o(At) 
~(  Y~(t + At)= x + I I Y~(t)= x)= [ U(ex) . At + o(At) 

We shall consider the naturally rescaled process 

We denote by D0[0, 0] the space of right-continuous trajectories with 
discontinuities only of the first kind on [0, 0] starting from the origin, 
endowed with the Skorohod topology. By Co[0, 0] we denote the subspace 
of continuous trajectories and by AC0[0, 0] the subspace of absolutely 
continuous trajectories. (Note that the Skorohod topology restricted to 
Co is exactly the sup-norm topology. More details about the Skorohod 
topology can be found in ref. 5.) Clearly, ~ e  Do[0, 0]. 

It can be shown that the weak law of large numbers holds for the 
processes ~, i.e., 

~ Prob f in Do[0,0] 

where fi is the unique solution of the ordinary differential equation 

) = r ( ~ ) - / ( y ) ,  ~(o)  = o 

We ask about the large deviations (of order 1) from this LLN trajectory. 
The answer is given by the following consequence of Ventsel's Theorem 2.1 
in ref. 22. 

T h e o r e m  2 (A. D. Ventsel'). Under the assumed conditions, the 
processes ~ e Do[0, 0] obey the full large-deviation principle governed by 
the following rate function (or action functional): I 0 

fo L(y(s), ~(s)) as + o 
J [ Y ]  = if y e ACo[0, 0] and the integral is finite 

oo otherwise 

(4.1) 
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where the Lagrangian is 
v ([v2+4l(x) r(x)]l/2+v.l(x)~ 

L(x ,v)=~log [v2 +4l(x) r(x)]l/2_ v r(x)] 

- { Ev 2 + 4 / (x )  r ( x ) ]  1/2 _~ q ( x ) }  

and 

(4.2) 

q ( x )  = 1 - t ( x )  - r ( x )  

Let us turn back now to our concrete problem. We have the family of 
continuous-time random walks yN, v(t ) on 7/ starting from the origin, with 
unit jump rate and jump probabilities given in (3.1), and we now ask about 
the asymptotics of 

when N, V-~ oe in such a way that N/V--* p. As this problem is invariant 
under the change N ~ V -  N, we shall assume from now on that p ~< 1/2 
and N~< V - N .  Thus, the random walks yX, v are confined to the interval 
[0, N].  The natural setup for our problem is to look at the large deviations 
of the rescaled processes 

1 yN, V(Nt) ' t c [ 0 , 0 ]  with O=(1-p) f l  U' v(t)=~ 

(As the processes ~x,v are confined to the interval [0, 1 ] with probability 
1, we need not extend everything to the whole line N.) 

In order to apply Theorem 2, we have to identify ~ with N 1, and the 
functions 1, r, q" [0, 1] ~ ~+ [eft (3.1)] as follows (x~ [0, 1]): 

1 p x2 r (x)=l- l_-~x+ 1_ p 

l ( x )=  p x 2 (4.3) 
1 - p  

q ( x ) = l - l ( x ) - r ( x ) =  1 x -  2p x2 
1 - - p  1 - p  

When identifying l ~ and r ~ we get exactly the same formulas with N/V 
instead of p; see the right-hand side of (3.1). 

The only difference between this setup and Ventsel's original one is 
that our random walks ]zN, V(I ) and rescaled processes i N' v(t) are confined 
to the intervals [0, N]  and [0, 1], respectively. But, as the conditions of 
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the theorem are satisfied in the interior of these intervals, one can check 
that all the steps of Ventsel's proof apply. 

Thus, the large-deviation principle holds for our rescaled random walk 
N ~yN'V(Nt). The rate function go[Y] is defined in (4.1) with the 
Lagrangian Lo(x, v) defined in (4.2), with the functions l, r, and q given in 
(4.3). 

5. A FIRST LOOK AT THE V A R I A T I O N A L  PROBLEM 

The expert in large-deviation theory will have guessed already that the 
limit (3.2) must be determined by the variational expression 

I p ( O) = in f {go[ y ] l yeC [ O, O] s uch tha t  y(O)=O=y(O)} (5.1) 

where ~r is defined at the end of the previous section. And indeed, we shall 
prove this assertion in the next section. But in order to do that, some 
preparation must be done. 

For the moment consider (5.1) as definition of Ip. The present section 
is devoted to the preliminary analysis of this variational problem. To this 
problem the classical Euler-Lagrange theory applies. <8~ As the Euler- 
Lagrange equation looks rather complicated and we are not going to use 
it explicitly, we do not write it down here. But according to the Euler- 
Lagrange theory the following constant of the motion (i.e., "energy") is 
found: 

v OLp -~v  (x, v) - Lp(x, v) = Iv 2 + 4/(x) r(x)] 1/2 + q(x) 
(5.2) 

[J)(t) z + 4l(y(t)) r(y(t) ) ] z/2 + q(y(t)) = E e  [0, or 

where E is constant along trajectories y(t) satisfying the Euler-Langrange 
equation. Using this conservation law, we find that in the x-v plane the 
trajectories are the hyperbola branches 

where 

v2=aE(x--bE)2--CE, Xe [0, 1], Ve~ 

( 1 - 2 p ) 2 + 4 p ( 1 - p ) E  

aE= (1 _p)2 

(1 - p ) E  
b E - -  (1 --  2p)  2 + 4p(1 --  p)E (5.3) 

4p(1 --p) E2(1 - E )  
cE -  (1 - 2 p )  2 + 4 p ( 1 - p ) E  
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as shown in Fig. 2. [At this point some care is needed, since when 
rationalizing Eq. (5.2) a family of spurious appears for E <  

m a x o ~  1 q(x).] 
In this parametrization, trajectories with E ~ (1, oo ) flow from x = 0 to 

x = 1 (and back). To E =  1 corresponds the LLN trajectory 

Y ? = l - - -  
1 - p  

(and the backward motion on the same path). We are interested only in 
the trajectories in the range of parameters E e (0, l) which start from and 
return to x = 0. For  E fixed in this range, denote by 

v+(x) = +_[aE(X--be):--Ce] I/2, x e  [0, XE] (5.4) 

the velocity as a function of position, where 

\ a E /  = l + [ 4 p ( 1 - - p ) ( 1 - - E ) ]  1/2 
(5.5) 

is the turning point of this trajectory. 
We are ready now to prove the existence of the limit (3.2). After doing 

that, we shall return to the analysis of the variational problem. 

V' 

~4 

Fig. 2. The flow diagram in the x - v  plane. 



760 T6th 

6. THE EXISTENCE OF THE T H E R M O D Y N A M I C  L IMIT  

In this section we prove the first assertion of Theorem 1. We prove the 
following. 

Lemma 1. The limit (3.2) exists and its value is given by the 
variational expression (5.1). 

The existence of the thermodynamic limit (2.1) follows from this 
lemma via (3.3). 

Proof. The upper bound. As {yeDo[O,O]ly(O)=O } is a closed 
subset of Do[0, 0], the upper bound 

sup 1 l o g  7 (  yN, V (N O)  = O) lira 
N V ~ o o  1 u  
;#/v + p 

= lim sup l l o g  7(~ u' v(o) = O) 
N V ~ o o  i v  
N/v  ~ p 

<~ -inf{JpEy] l y e  Do[O, 0], y(O)=0} 

follows directly from the large-deviation principle of Section 4. 
The lower bound. Obviously 

7(  yU, V(NO) = O) 

>>. 7 (  yU, V(NO) = 0 and yU, V(N(O _ 3)) < N6) 

>17( yN, V(N(O _ 6)) < NS) 

x min 7(yN'V(NO)=O]yN'V(N(O--5))=k) 
O<~k % N6 

(6.1) 

As a direct consequence of the large-deviation principle of Section 4 we 
have 

1 
lim --log 7 (  Y N ' V ( N ( O  - 3 ) )  < N6) 

%/vz. 7 N 

= lim inf i log 7 ( ~  N" V(O - -  (~) < (~) 

>~ - in f {Jp[y] l yeDo[O,  0], y ( 0 - 6 ) < 5 }  (6.2) 
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But from the analysis of the previous section [especially from (5.3) and the 
flow chart] we see that the trajectory which minimizes (5.1) has speed 
strictly less than 1, and consequently, for that trajectory, y (0 -5 )<c5 .  
Thus, we get 

i n f {~EYJ  l y e  Do[O, 0], y ( 0 - 6 ) < 6 )  <. inf{~ ] l y e  Do[O, 0], y(O) = O} 
(6.3) 

In order to estimate the second factor in the right-hand side of (6.1), 
observe that for Vke [0, N6] 

~(  y i ,  V(NO) = O t yN, V(N(O _ (~)) = k) 

>/e-Na k! V -  N N -2 
l = 1  

>/e -Na 
t~=l= V N N 2 (6.4) 

and thus 

l iminfl log [ min ~(yN'v(NO)=OI yN'V(NO-~)))=k)] 

~> - - 5  - 6 log log ds ( 6 . 5 )  
P 

By combining (6.1)-(6.5) and taking the limits N-* 0% V-* o% N / V - * p ,  
and 5 -* 0 subsequently, we get the lower bound. 

7. EVALUATION OF THE RATE FUNCTION 

At the present stage we know that the thermodynamic limit (2.1) exists 
and the free energy is given by (3.3) with Ip defined by the variational 
expression 

0 

Ip(0) = p(o) =info = y(o) fo Lp(y(s), 9(s)) ds + O (7.1) 

The present section is devoted to the evaluation of Ip. 
We shall do this by fixing a value of the energy E e(0, 1) and 

calculating 0 and Ip as functions of this parameter. 
Let ye(s) be the solution of the Euler-Lagrange equation belonging to 
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the energy value E, with initial condition ye(O)= O. We denote by Op(E) 
the orbit time and by Sp(E) the action of this trajectory: 

Op(E) = min{s > 0 [ yE(s) = O} 

~(E) ~0~(~ = Lp(ye(s), )~e(s)) ds 
~0 

Using the explicit form (4.2) of Lp and the conservation law (5.2), we 
express these functions as the following integrals: 

- d x  (7 .2)  
O~(E) = 2 fo ~ I); (x) 

+ C:~E E -- q(x) + v E (x) 
~;(E) Jo log E -  q ( x ) - - v ; ( x )  dx - EOp(E) (7.3) 

with v~(x)  and q(x) given in (5.4) and (4.3). The integration in (7.2) is 
straightforward. The orbit time is 

1 - p log  1 + [ ( 1 - 2p)2 + 4p(  1 - p)  E ]  ~/2 
O o ( E ) = [ ( 1 - Z p ) 2 + 4 p ( 1 - p ) E ] l / 2  1 - [ ( 1 - 2 p ) ~ + 4 p ( 1 - p ) E ]  t/2 

(0, l ) ~ E ~ Op(E) e ~ + is a C~o monotonic increasinig function with 

1 - p  1 - p  
0p(0) = 1 L 2p log . . . . . .  O,(p) (7.4) 

P 
and 

lira 0p(E)= 
E ~ I  

Consequently, for any 0 e [0~r(p), ~ )  the equation 

Op(E) = 0 (7.5) 

has a unique solution E(O)e [0, 1) and this is a Co  function of 0. On the 
other hand, for 0e  [0, Oct(p)), Eq. (7.5) has no solution in [0, 1). This 
means exactly the following. For 0 e (0or(p), oo) the Euler-Lagrange equa- 
tion with the initial and final condition y(0) = 0 = y(O) has two solutions: 
(1) yo(s)=O, s t (O,  O) and (2) yE(o)(s), s t (O,  0). It is easy to see that the 
second one minimizes (7,1). On the other hand, for 0 ~ [0, 0cr(p)] the only 
solution of the Euler-Lagrange equation with the given initial and final 
condition is as (1) above, and consequently this is the minimizer of (7.1). 

Thus we have proved the following equality: 

( 0 
Ip(O) - o = [ ~S~(E(O) )  (7.6) 

if o ~ (oo~(p), Go) 
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The next step is to find a nicer expression for Sp(E). In this order let 
us calculate first its derivative with respect to the parameter E: 

dS~ dX~ E -  q(Xe) + v~ (2e) 
dE (E) = ~ - .  log E -  q(XE) -- V~ (XE) 

+2  [E_q(x)]2 [v+(x)]2 [ E - q ( x ) ] - ~ ( x ) - v ~ ( x )  dx 

dOp -Oo(E ) -E~ (E) 

+ - But as v E (XE)= 0, the first term cancels. Using the conservation law (5.2) 
and the expression (7.2) for the orbit time, the second and third terms 
cancel as well and in the end we are left with 

dS ~ dO ~ 
dE (E)= - E  ~ (E) (7.7) 

Combining (7.6) and (7.7), we have 

0 f f  if 0~[0,0o~] 

Ip(O)-O= _ E(O')dO' if Oe(O~, oo) 
r 

After integrating by parts the right-hand side, we get the following. 

Lemma 2. 

t 
0 if 0 E [0, 0cr ] 

Ip(O)--O= (1--2p) 2 
t ~ i - ~  ( 0 - 0 ~ ) +  logE1-E(O)] +OE(O) if Oe(Oc~, oo) 

(7.8) 

where E(O) is the unique solution of (7.5) and 0o~= Ocr(P) is defined in 
(7.4). 

Lemmas 1 and 2 via formula (3.3) give the complete proof of 
Theorem 1. 
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